Dimensional Reduction of Dirac Operator

نویسندگان

  • Petko A. Nikolov
  • Gergana R. Ruseva
چکیده

We elaborate an explicit example of dimensional reduction of the free massless Dirac operator with SU(3)-symmetry, defined on 12-dimensional manifold, which is the total space of principle SU(3)-bundle over 4-dimensional manifold. It turns out that after the dimensional reduction we obtain the “usual” Dirac operator, defined on 4-dimensional pseudo-Riemannian (non-flat) manifold but with mass term, acting on two spinor SU(3)-octets in the presence of gauge field with structure group SU(3) and source term depending on the stress tensor of the gauge field. The group of symmetry SU(3) is chosen because it is a classifying group for the Standard model and in the same time is complicated enough to demonstrate all the details in the general case. We pay attention and point out the crucial moments in the procedure of the dimensional reduction, where the new structures (gauge field with structure group SU(3), its stress tenzor, two spinor SU(3)-octets and mass term) arise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

Two dimensional N = ( 2 , 2 ) super Yang - Mills theory on the lattice via dimensional reduction

TheN = (2, 2) extended super Yang-Mills theory in 2 dimensions is formulated on the lattice as a dimensional reduction of a 4 dimensional lattice gauge theory. We use the plaquette action for a bosonic sector and the Wilsonor the overlap-Dirac operator for a fermion sector. The fermion determinant is real and, moreover, when the overlap-Dirac operator is used, semi-positive definite. The flat d...

متن کامل

On the Number of Eigenvalues of the Discrete One-dimensional Dirac Operator with a Complex Potential

In this paper we define a one-dimensional discrete Dirac operator on Z. We study the eigenvalues of the Dirac operator with a complex potential. We obtain bounds on the total number of eigenvalues in the case where V decays exponentially at infinity.

متن کامل

Minimax Principles, Hardy-Dirac Inequalities, and Operator Cores for Two and Three Dimensional Coulomb-Dirac Operators

For n ∈ {2, 3} we prove minimax characterisations of eigenvalues in the gap of the n dimensional Dirac operator with an potential, which may have a Coulomb singularity with a coupling constant up to the critical value 1/(4 − n). This result implies a socalled Hardy-Dirac inequality, which can be used to define a distinguished self-adjoint extension of the Coulomb-Dirac operator defined on C0 (R...

متن کامل

A Simple Derivation of the Overlap Dirac Operator

We derive the vector-like four dimensional overlap Dirac operator starting from a five dimensional Dirac action in the presence of a delta-function space-time defect. The effective operator is obtained by first integrating out all the fermionic modes in the fixed gauge background, and then identifying the contribution from the localized modes as the determinant of an operator in one dimension l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002